Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors.
نویسندگان
چکیده
The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.
منابع مشابه
A bicistronic therapeutic retroviral vector enables sorting of transduced CD34+ cells and corrects the enzyme deficiency in cells from Gaucher patients.
Corrective gene transfer for therapeutic intervention in metabolic and hematopoietic disorders has been hampered by the relatively inefficient transduction of human hematopoietic stem cells. To overcome this, a bicistronic recombinant retrovirus has been generated that delivers both a therapeutic glucocerebrosidase (GC) cDNA for the treatment of Gaucher disease, and a small murine cell surface ...
متن کاملCorrection of the enzyme deficiency in hematopoietic cells of Gaucher patients using a clinically acceptable retroviral supernatant transduction protocol.
Gaucher disease is a lysosomal storage disorder caused by a deficiency of the enzyme glucocerebrosidase (GC), and is an excellent candidate for gene replacement therapy. To develop a clinically acceptable protocol for this purpose, we created two amplified (A) high-titer retroviral vector-producer cell lines to efficiently transduce hematopoietic stem and progenitor cells. GP+envAm12/A-LGSN (A-...
متن کاملEfficient retroviral transduction of human B-lymphoid and myeloid progenitors: marked inhibition of their growth by the Pax5 transgene
We applied a coculture system for the genetic manipulation of human B-lymphoid and myeloid progenitor cells using murine bone marrow stromal cell support, and investigated the effects of forced Pax5 expression in both cell types. Cytokine-stimulated cord blood CD34+ cells could be transduced at 85% efficiency and 95% cell viability by a single 24-h infection with RD114-pseudotyped retroviral ve...
متن کاملConstitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors.
The role of the homeobox gene HOXA5 in normal human hematopoiesis was studied by constitutively expressing the HOXA5 cDNA in CD34(+) and CD34(+)CD38(-) cells from bone marrow and cord blood. By using retroviral vectors that contained both HOXA5 and a cell surface marker gene, pure populations of progenitors that expressed the transgene were obtained for analysis of differentiation patterns. Bas...
متن کاملGrowth factors and stromal support generate very efficient retroviral transduction of peripheral blood CD34+ cells from Gaucher patients.
We have achieved high-efficiency gene transfer into nonmobilized peripheral blood (PB) CD34+ cells from patients with Gaucher's disease using a clinically acceptable retroviral supernatant transduction protocol. In our studies, bone marrow (BM) and PB CD34+ cells were transduced using a high titer (10(8) particles/mL) retroviral supernatant once a day for 4 consecutive days in the presence of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 26 شماره
صفحات -
تاریخ انتشار 1995